Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JDS Commun ; 4(1): 31-34, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36713126

RESUMO

We evaluated the effects of 2 direct-fed microbial (DFM) supplements containing 4 native rumen microorganisms on the production of dairy cows. Ninety Holstein cows (43% primiparous) were fed a common diet. Mean days in milk, milk yield, and body weight at the beginning of the study (mean ± standard deviation) were 92 ± 23 d, 45 ± 10 kg/d, and 659 ± 86 kg, respectively. After 14 d, they were blocked by parity, days in milk, and energy-corrected milk (ECM) per unit of metabolic body weight. Within block, cows were randomly assigned to treatments, which were top-dressed daily for the next 112 d. Treatments were 150 g of ground corn mixed with (1) no live DFM (CON), (2) 5 g of a live DFM (Galaxis 2.0; G2), and (3) 5 g of a live DFM (Galaxis 2.0 Plus; G2P). G2 and G2P were products of Native Microbials Inc. (San Diego, CA) and contained the same organisms but in different concentrations. Supplementation with DFM did not alter yield of total milk, protein, or fat, but slightly decreased body weight gain and body condition score gain with no difference between G2 and G2P. The DFM tended to decrease dry matter intake (DMI) and tended to improve ECM/DMI. The DFM did not alter digestibility of fiber, starch, or protein and did not alter concentrations of glucose or nonesterified fatty acids, but tended to decrease concentration of insulin in plasma. Direct-fed microbials decreased somatic cell counts in milk with no difference between G2 and G2P. In conclusion, supplementation with native DFM had little impact on animal production and efficiency.

2.
Sci Rep ; 9(1): 9522, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31266992

RESUMO

Nutritional studies involving ruminants have traditionally relied on relatively short transition or wash-out periods between dietary treatments, typically two to four weeks. However, little is known about adequate adaptation periods required to reach stabilization of the rumen microbiome that could provide more accurate results from nutritional studies in ruminants. This study determined the rumen bacterial communities and rumen environment parameters over ten weeks following transition from a forage-based to concentrate-based diet. Several α-diversity metrics, including observed OTUs and Simpson's Evenness fluctuated throughout the trial, but were typically either greatest (observed OTUs) or lowest (Simpson's) at week 5 of the trial contrasted from weeks 1 and 10 (P < 0.05). At week 4, several orders associated with the shift to the final bacterial community composition, including Pasteurellales, Aeromonadales, and Bacteroidales. At week 5, rumen pH was correlated with α-diversity (P = 0.005) and predictive of the rumen microbiome signature at week 10 (R2 = 0.48; P = 0.04). Rumen microbiome stability did not occur until approximately 9 weeks following adaptation to the diet and was associated with changes in specific bacterial populations and rumen environment. The results of this study suggest that adaptation and wash-out periods must be re-evaluated in order to accommodate necessary rumen microbiome acclimation.


Assuntos
Bactérias/isolamento & purificação , Microbiota , Rúmen/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Bovinos , Dieta/veterinária , Concentração de Íons de Hidrogênio , Filogenia , Análise de Componente Principal , RNA Ribossômico 16S/química , RNA Ribossômico 16S/metabolismo , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...